Teaching Sales & Negotiation Skills in combining Methods

Lionel BOBOT Professeur NEGOCIA (CCIP) lbobot@advancia-negocia.fr

Enseignement des Techniques de Vente & Négociation en combinant des méthodes

Résumé :

Les professeurs en marketing ont reconnu le besoin de mieux préparer les étudiants aux carrières commerciales. Dans cet article, l'auteur compare l'efficacité de deux différents cours en vente & négociation : un centré sur des cas et un autre combinant une simulation par internet et des cas. Les deux cours sont statistiquement équivalents concernant les objectifs pédagogiques ; il n'ya pas de différences significatives entre les deux cours incluant les mesures des objectifs et les perceptions des étudiants

Mots-clés : vente, enseignement vente et négociation, simulation par internet

Teaching Sales & Negotiation Skills in combining Methods

Abstract :

Marketing educators have recognized the need for better preparation of marketing students for sales careers. In this study, the author compared the effectiveness of two different sales management course designs: one centered on case discussions and the other combining a computer-based simulation with some cases. In addition to evaluation of the research literature, the study involved experiments with six course sections composed of 150 students. Both course designs produced statistically equivalent learning outcomes; there were no significant differences between the two course designs in any of the nine outcome measures, including objective measures and student perceptions.

Key-words: sales management, teaching sales & negotiation, computer-based simulation

Introduction

Salespeople serves as a primary conduit between firms and their customers; and business and non-business students alike have begun to recognize the importance of developing selling skills (Shaw, 2007). Experts in the sales discipline suggest that approximately 80% of college students graduating with a marketing major and nearly 50% of finance majors will spend at least a portion of their careers in professional sales (Heckman, 1998; Jones, Stevens, & Chonko, 2005; Weilbaker, 2001). In the same manner, marketing educators have recognized the need for better preparation of marketing students for sales careers (Chapman & Avila, 1991). A sales management course is required for graduation in almost all colleges of business, usually as an integrating "capstone" course. Although cases have a long and established history in sales management courses, simulations have received attention more recently for both their increasingly sophisticated designs and their promotion of student interest. Consequently, I undertook this experimental research study to investigate how combining a computer-based simulation with cases affected student performance against learning objectives. This investigation involved evaluation of the research literature and then experimental testing of the relative effectiveness of two sales management course designs: a traditional design centered on case discussions and a more novel one combining a simulation with some cases.

Sales Management Pedagogy

- As such, academicians teaching sales courses have began considering innovative ways to enhance the learning environment in order to adequately expose students to the requisite skill set for succeeding in the sales profession. The process of selling relies upon a variety of skills including prospecting, identifying needs, communication, and closing the sale (Parks & Areni, 2002; Widmier, Loe & Selden, 2007). Skills training may include techniques for handling objections, closing techniques, techniques for identifying buying center participants and negotiation techniques (Leach, Liu & Johnston, 2005). A popular method that has been suggested for accomplishing this entails bringing more realism into the classroom (Hawes et al. , 2004; Mantel et al. 2002; Stitt, 2005).
- A number of tactics for integrating sales theories with practical experience have been used by sales faculty. Presentations and the use of role-play are regarded as the most important topic covered in sales related academic curriculum by both professors and sales representatives (Parker et al., 1996). For example, Chapman and Avila (1991) referenced

numerous studies where simulated "real world" environments have been created so roleplaying activities could be used as an experiential component of sales courses. Other instructors have chosen to augment this approach by involving real business professionals (Alessandra and Wright, 1977; Jones, 2001) or students from different sales courses (Bobbitt et al., 2000; Chapman and Avila, 1991; Faria & Dickinson, 1994; Mantel et al., 2002).

Cases and computer Simulations

- Cases and computer simulations are used widely. Faria (1998) reported that 28% of a random sample of professors across all business disciplines were using a business simulation game during the semester in which the survey was conducted; however, 52% of those surveyed had used a simulation at some time, and only 7% of those reported stopping because of dissatisfaction with business games. Among schools accredited by the Association to Advance Collegiate Schools of Business (AACSB), 97% have used simulations in some way. Further, Faria found a trend of increased use of simulations compared with his results in an earlier (1987) survey.
- Both case discussions and computer simulations are intended to provide active learning, in which students apply knowledge to practice. Both are consistent with John Dewey's (1966) injunction that "careful inspection of methods which are permanently successful in formal education . . . will reveal that they depend for their efficiency upon the fact that they go back to the type of situation which causes reflection out of school in ordinary life. . . . They give the pupil something to do, not something to learn, and the doing is of such a nature as to demand thinking" (p. 154).
- There has been continuing debate about the relative effectiveness of cases and computerized simulations. However, the debate is less grounded than is desirable: Keys and Wolfe (1990) concluded, "Many of the claims and counterclaims for the teaching power of . . . games rest on anecdotal material or inadequate or poorly implemented research designs" (p. 311). Lundeberg, Levin, and Harrington (1999) stated, "Up until the mid-1990s, the match between the claims of case users . . . and a solid empirical research base was remarkably weak. . . .
- Essentially, the conversations about case based instruction over the last two decades have been full of heat, but with very little light" (p. xiv).

Some professors and researchers prefer case discussions over simulations; some prefer the converse; and still others advocate an integrated mixture of both. The research on the relative

effectiveness of cases and computer simulations is limited and conflicting. Keys and Wolfe, in their 1990 review, cited several studies that conclude that students learned more from simulations than from case studies in sales management courses; they also cited several studies in which cases were found to be the more effective approach. Examples of recent articles advocating simulations include Faria (2002), Prensky (2000), and Wolfe (1997); articles by Barnes, Christensen, and Hansen (1994); Levin (1999); Lundeberg et al. (1999); and Lynn (1999) advocate cases.

- Widmier, Loe and Selden (2007) concluded that, although much of sales management may be taught with either cases or games, it is preferable to use both cases and a simulation for a variety of reasons. They concluded that simulations elicit greater responses from students than do case studies and are more effective in enhancing self-efficacy, whereas case studies are better at providing exposure to multiple industries and building written communication skills. Fripp (1993), although an advocate of simulations, concluded that "the best results are achieved when simulations are used in conjunction with other learning methods." In developing this conclusion, he makes use of his extended learning model, which he believes shows that "no one learning method is able to provide all the knowledge and skills required by managers" (p. 54).
- A preliminary study by Teach (1993), using self-report questionnaires completed by business school graduates 3 to 5 years after graduation, concluded that both computer simulations and cases had made important contributions to the learning of skills important in the graduates' current jobs, with some differentiation in those skills best taught by each method. For example, his results indicated that simulations were most effective in teaching how to forecast and make decisions, plan and organize, adapt to new tasks, assess a situation quickly, and develop teams. Cases best taught how to put structure to unstructured problems, analyze problems and data, think creatively, and write effectively. Li and Baillie (1993), analyzing original data, commented that "perhaps the most interesting conclusion drawn from this study is that cases and complex games play a similar role in the business policy course" (p. 344). They concluded that "the best strategy might be to integrate both pedagogies and apply them concurrently" (p. 343).
- It seems clear from the research and analysis in the literature that students in sales management courses experience many positive outcomes from both cases and computer simulations, although there is some continuing debate about their relative advantages.

- However, the research shows increasing support for the idea that both have value and that a flexible combination of the two, adapted to specific course learning objectives, is appropriate.
- In sum, I propose the following primary hypotheses (*H*s) regarding the effectiveness of two different sales management course designs: one centered on case discussions and the other combining a computer-based simulation with some cases:
- *H*₁: Both case discussions and computer simulations have value.
- H_2 : Neither is a panacea or has general superiority over the other.
- *H*₃: Among students using the two course designs (with and without a simulation), there is no difference in performance.

Method

Experimental Conditions

- To test two different course designs, I used six sections of a sales management seminar taught at a NEGOCIA Business School from 2006 to 2008.
- One design, using the traditional case method (TCM), made primary use of comprehensive cases, which students read as homework and discussed in class. The second design, using computer simulation plus cases (CSC), replaced about half of the case work with a computer simulation.
- The sales management & negotiation seminar is usually taken in the last semester of undergraduate work. The sections of this course, which are limited to approximately 25 students each. The TCM course design is fairly traditional, similar to that popularized by the Harvard Business School. Cases for both course designs were comprehensive and taken from the textbook, *Dalrymple's Sales Management: Concepts and Cases*, by Cron & DeCarlo (2003). The CSC course design made use of the *Mars Sales Management Simulation* (Cook, 2003), a computer-based simulation of companies competing in a global casual shoe industry. This simulation, in use for over 17 years, has been used at this university for over 5 years.
- The MARS simulation is designed to accommodate from 2 to 16 teams. Students take the role of a newly promoted, first-line, district sales manager. They have responsibility for directing and motivating 5 salespeople in their district. Each of the 5 salespeople in the district have a unique set of preferences, and experience levels; and as such respond differently to the various decision input variables available to students. Each sales person is

assigned to a unique, geographic territory. The product is a line of electronic video games that can be played on computers or a variety of gaming machines. Sales of these products are highly seasonal. This forces the students to carefully consider their decisions from one decision period to the next. Since students cannot hire or fire their salespeople, they are forced to concentrate on the determinants of salesperson performance. Their job is to maximize that performance (Cook, 2004).

I randomly assigned the two different course designs to sections. All six sections of the course were taught by the same professor (the author) and used the same textbook and the same cases (except for the three additional ones used in the TCM design); they all met twice weekly on the same days for classes that lasted 1 1/2 hours, during semesters of 15 weeks, excluding finals.

In Table 1, I summarize	the allocation of	class time and of	her background information	on:
,			υ	

Item	TCM	CSC
Allocation of class time (%)		
Conceptual material and review	33	27
Case discussions	54	27
Simulation (in-class portion)	0	33
Examinations	7	7
Assessment and other	6	6
Other information		
Number of sections	3	3
Students enrolled	74	72
Students completing all measures	67	65

Table 1. Background Information on Course Sections

- Approximately 9% of the enrolled students did not complete all the outcome measures (primarily because of absences on the day that most of the data were obtained) and so could not be included in the samples.
- The relatively small fraction of enrolled students thus excluded was about the same across the two design treatments and the six course sections, and the excluded students were very similar to those in the samples in terms of the background variables.

Course Learning Objectives

- For its sales management course, a requirement for all students, the business school has adopted the following five student learning objectives:
- 1. Improve sales & negotiation skills in critical thinking.
- 2. Learn to think systemically (i.e., to think about the broader system involved and interactions within it when considering specific decisions).
- 3. Understand and integrate previous business course concepts to be able to apply the concepts in future business situations.
- 4. Develop the ability to analyze a complex sales situation, identify key issues, and develop recommended strategies and actions.
- 5. Improve ability to communicate (especially write) clearly, cogently, and effectively.
- Other learning objectives are not listed explicitly, such as improving skills in working with others and in teams, and helping students prepare for successful careers after college. Approximately forty semester-long sections of this course are taught each year, some entirely case-based and some combining cases and computer simulations.
- Clearly, decisions about pedagogy and evaluation of the effectiveness of a sales management course depend on the learning objectives for a course, in addition to other factors such as instructor skills and preferences. Although the five objectives used in this study are associated with the author's university, they are very similar to and typical of objectives (a) mentioned in mainstream sales management textbooks, (b) used by many other professors, and (c) cited by various researchers looking at the effectiveness of cases and simulations (e.g., Cook, 2004; Li & Baillie, 1993; Widmier, Loe & Selden, 2007).

Measures

I used nine outcome measures of two types: measures of objective learning (four variables) and student self-reports (five variables):

Means and statistics for student	Means and statistics for objective				
perception outcome measures (1–5 scale)	outcome measures (0–20 scale)				
Q1 (thinking strategically)	Q6 (diagnosis question)				
Q2 (thinking systematically)	Q7 (sales formulation question)				
Q3 (integrating previous courses)	Q8 (implementation question)				
Q4 (analyzing/developing	Q9 (sales thinking vignette)				
recommendations)					
Q5 (improving communication abilities)					

Then a neutral outside party coded and randomized the sheets, and a different outside party, an individual experienced in teaching and evaluating sales management materials, graded the papers. These four objective measures were supplemented by anonymous student evaluations of the extent to which the course helped the respondents learn/improve/develop (appropriate wording for the item) each of the five course learning objectives. They rated each component on a scale based on the following 5 anchors: 1 (not at all), 2 (slightly), 3 (to a fair extent), 4 (significantly), and 5 (very much).

Managing Researcher Bias Issues

- I identified several possible sources of bias during the experimental design and took steps to eliminate or reduce their potential. One could first ask about slanted learning objectives. However, the learning objectives used for the courses and in the five self-report variables are those developed by the college, not the professor, and they are used for all of the approximately 40 sections of the sales management course taught each year by 6 professors, each with individual choices about textbooks and course design. The learning objectives are typical of mainstream objectives in other colleges and seem to present no bias problems. Second, all six sections of the course used in the study were taught by the same professor (the author), raising the question of biased differences in the two course designs. I took the following steps to reduce this possibility: (a) using the same text, readings, lecture outlines, cases (although more were used in TCM sections), and course timing for each section of both designs; (b) avoiding case-or simulation-biased outcome measures; and (c) gathering the data only after I previously had taught each design multiple times. I did not have preferences between the two designs or pre-existing beliefs about their effectiveness.
- Most important, the alternative of using multiple professors would have introduced significant uncontrolled variability into the course designs, including the five variables listed in item (a) above. Third, the four objective variables were graded through a double blind process, without my involvement.
- As previously explained, the students wrote answers anonymously, and then the sheets were coded and randomized by an outside party and graded by a different outside party.

Results and Discussion

I analyzed the data with SPSS version 10.1, using a one-way, between-groups (independent groups) design, with multivariate dependent measures. I summarize primary output from

the analysis in Tables 3 and 4. Initially, I anticipated that a one-way multiple analysis of variance with post hoc comparisons might be necessary, with both treatment condition and class section as independent variables. The variations among sections within each of the two designs were small enough, however, that it was not necessary to retain class section as an independent variable.

One set of data analysis evaluated the potential variability among different sections with the same course design (treatment condition). In Table 3, I summarize means plus results from the analysis of variance on the three background factors and nine outcome measures for the three sections in each of the two treatment conditions. There were no significant differences for any of the background or outcome variables among the sections within each of the two course designs:

	TCM course section and statistics					CSC course section and statistics						
Item	1	2	3	M F ratio p		(sig.)	4	5	6	М	F ratio p	(sig.)
Background factors												
Number of students (sample size)	23	24	19				23	18	23			
Cumulative college GPA (4.0 basis)	2.96	2.81	3.02	2.92	1.463	.239	2.87	2.82	2.84	2.85	.074	.92
GPA at current university (4.0 basis)	2.94	2.78	2.98	2.89	1.076	.347	2.82	2.77	2.75	2.78	.100	.90
Sex (% female)	52	42	47	47	.251	.779	48	44	35	42	.413	.66
Means for student perception outcome measures												
(1-5 scale)												
Q1 (thinking strategically)	4.00	3.87	4.11	3.98	.468	.629	4.22	4.06	4.04	4.11	.461	.63
Q2 (thinking systematically)	3.96	3.67	3.89	3.83	.855	.430	4.00	3.94	3.96	3.97	.035	.96
Q3 (integrating previous courses)	3.65	3.50	3.79	3.64	.610	.547	3.61	3.67	3.39	3.55	.501	.60
Q4 (analyzing/developing recommendations)	4.39	4.33	4.21	4.32	.393	.677	4.39	4.17	4.22	4.27	.699	.50
Q5 (improving communication abilities)	3.61	3.37	3.74	3.56	.715	.493	3.52	3.44	3.26	3.41	.514	.60
Means for objective outcome measures (0-20 sca	le)											
Q6 (diagnosis question)	17.6	17.4	17.7	17.6	.150	.861	17.2	17.3	17.2	17.2	.027	.97
Q7 (sales formulation question)	17.3	16.8	17.3	17.0	.415	.415	17.4	17.1	17.3	17.3	.110	.89
Q8 (implementation question)	16.5	16.5	16.7	16.6	.062	.940	16.5	16.8	17.0	16.8	.736	.48
Q9 (sales thinking vignette)	15.5	14.8	15.3	15.3	.630	.536	15.0	14.3	14.8	14.8	1.304	.27

Table 3. Evaluation of Variations between Section Within Treatments

As can be seen in Table 3, the smallest *p* values (i.e., observed levels of significance, which are the probabilities that differences as great as those observed would occur even if the null hypothesis were true) for any of the between-section analyses were .24 and .28 for the background and outcome variables, respectively. Therefore, because of this consistency among sections within each design treatment, I concluded that the data for all three sections within each of the two designs could be combined for the rest of the analysis.

In Table 4, I summarize the means and key statistical parameters for the two design treatments (pooling the sections within each treatment) on the background factors plus all nine outcome measures:

	TCM	CSC		
Item	(N = 66)	(N = 64)	F ratio	<i>p</i> (sig.)
Background factors				
Cumulative college GPA	2.92	2.85	.941	.334
GPA at current university	2.89	2.78	1.585	.210
Gender (% female)	47	42	.297	.587
Means and statistics for student				
perception outcome measures (1–5 scale)				
Q1 (thinking strategically)	3.98	4.11	.959	.329
Q2 (thinking systematically)	3.83	3.97	1.043	.309
Q3 (integrating previous courses)	3.64	3.55	.323	.571
Q4 (analyzing/developing				
recommendations)	4.32	4.27	.210	.648
Q5 (improving communication abilities)	3.56	3.41	.856	.356
Means and statistics for objective				
outcome measures (0-20 scale)				
Q6 (diagnosis question)	17.6	17.2	.824	.366
Q7 (sales formulation question)	17.1	17.3	.311	.578
Q8 (implementation question)	16.6	16.8	.579	.448
Q9 (sales thinking vignette)	15.2	14.8	.875	.351

Table 4. Summary of Treatment Effects

- The background factors were consistent for the two treatment conditions, with no significant differences (all had p values of .21 or greater). There were no significant differences in any of the nine outcome variables between the two treatments (the smallest p value was .31).
- With respect to student preferences, it may be of interest that student responses in this study were strongly in favor of using a simulation as part of a sales management seminar. The breakdown for anonymous, confidential responses to the question "What is your recommendation regarding using this simulation in the next course?" from the 22 teams that participated in the computer simulation was as follows: seventeen (77%) for "definitely yes," 4 (18%) for "somewhat yes," and 1 (5%) for "somewhat no" (from a team finishing last in its MARS simulation) on a 4-point scale ranging from1 (definitely no) to 4 (definitely yes).

These responses and additional anecdotal feedback indicate that the students generally liked having a computer simulation as part of a sales management course, even though they also reported that it is a "lot of work" to learn and master. The positive, favorable reactions in this study to the use of a simulation are similar to those reported by Tompson & Tompson (1995) and Cook (2004) in student surveys in two types of sales management courses and Walter, Coalter, and Rasheed (1997) in an analysis of student evaluations.

Conclusions and Recommendations

- It was encouraging that both the evaluation of the literature and the results from the field experiments in this study confirmed the following hypotheses:
- *H*₁: *Both case discussions and computer simulations have value.*
- *H*₂: *Neither is a panacea or has general superiority over the other.*
- *H*₃: Among students using the two course designs (with and without a simulation), there is no difference in performance based on the central learning objectives adopted for the courses in this study.
- On top of that, an instructor has considerable flexibility to choose the relative emphasis given to cases and a simulation.
- Relative to the last point, it may be concluded that various factors could be considered in deciding on the use and relative scope of computer simulations and cases in designing a sales management course. These factors might include the mission and objectives of the college; learning objectives for a particular course; instructor strengths, style, and preferences; student reactions and preferences; and logistical factors such as student access to computers with appropriate software.
- Learning objectives for a specific course which should be in alignment with objectives of the department, college, and university clearly are the cornerstone for designing a course.
- Integrated course design models in common use today (e.g., Diamond, 1998; Fink, 2002) typically establish the learning objectives, then identify and develop corresponding techniques for feedback and assessment, and finally decide on appropriate teaching and learning activities.
- It is not hard to imagine some objectives and assessment techniques that would have a definite bias toward either case or simulation activities.
- However, it seems clear that there is considerable flexibility in the learning activities that effectively could support mainstream learning objectives typical of sales management

courses. A professor has considerable flexibility to choose the relative emphasis given to each. Some suggestions about fits between learning objectives and use of simulations and cases follow.

- More extensive use of case discussions is appropriate when course objectives and conditions such as the following are paramount:
- Learning about major conceptual concepts and models in the field;
- Establishing a close connection with student ideas and responses;
- Providing substantial interaction and immediate feedback between students and the professor about analysis, ideas, conclusions, and recommendations dealing with typical situations;
- Emphasizing individual student performance; and
- Providing students with an introduction to a number of types of organizations and situations concerning sales management that they possibly might encounter in their careers.
- In contrast, complex computer-based simulations have advantages when course objectives include the following:
- Experiencing more realistically the role and responsibilities of a top decision maker in trying to position his or her organization in a tough, competitive environment;
- Experiencing the uncertainties and surprises produced by the unpredictable actions of competitors; and
- Promoting student emotional arousal and involvement.
- Sales management courses provide an interesting, stimulating challenge for both professors and students.
- Ongoing improvements in course design and process require effective use of a variety of pedagogical techniques.
- This study provides data-based support for the conclusion that a professor has considerable flexibility in choosing between course designs based on case discussions and designs that combine a computer simulation with case discussions.

References

- Alessandra, A.J. and J.S. Wright (1977), *The Personal Selling Course: An Opportunity for Experiential Learning*, in Contemporary Marketing Thought: 1977 Educator's Proceedings.
- Barnes, L. B., Christensen, C. R., & Hansen, A. J. (1994). *Teaching and the case method* (3rd ed.). Boston: Harvard Business School Press.
- Bobbitt, M.L., Inks, S.A., K.J. Kemp, and D.T. Mayo (2000), Integrating Marketing Courses to enhance Team-based Experiential Learning, *Journal of Marketing Education*, 22 (April), 15-24.
- Chapman, J.D. and R.A. Avila (1991), Sales Training for Students: An Experiential Approach, *Marketing Education Review*, 1 (April), 54-59.
- Cook, K.J. (2004) The Pedagogy and Efficacy of Using a Sales Management Simulation: The MARS Salesforce Management Simulation Experience, *Proceedings of the National Conference on Sales Management*, Reno, Nevada, April 14-17, 2004.
- Cook, R.W., J.C. Cook, & K.J. Cook (2003), *MARS Sales Management Simulation*, http://www.shootformars.com, Cook Enterprises LLC.
- Dewey, J. (1966). Democracy in action. New York: Free Press.
- Diamond, R. M. (1998). *Designing and assessing courses and curricula: A practical guide* (rev.ed.). San Francisco: Jossey-Bass.
- Faria, A. J. and R. Dickinson (1994). Simulation Gaming for Sales Management Training, *Journal of Management Development*, vol.13, n°1, 47–59.
- Faria, A. J. (1998). Business simulation games: Current usage levels. An update. Simulation & Gaming, 29, 295–309.
- Faria, A. J. (2002). The changing nature of business simulation/gaming research: A brief history. *Simulation & Gaming*, 32, 97–106.
- Fink, D. (2002). *Designing courses for higher level learning*. Unpublished manuscript, University of Oklahoma, Instructional Development Program, Norman, OK.
- Fripp, J. (1993). Learning through simulations: A guide to the design and use of simulations in business and education. New York: McGraw-Hill.
- Heckmann, J. (1998), Internet, Sales Focus to Affect Higher Education, *Marketing News* 32 (25), 9–10.
- Hawes, J.M., A.K. Rich, and S.M. Widmier (2004), Assessing the Development of the Sales Profession, *Journal of Personal Selling and Sales Management*, 24 (Winter), 27-37.

- Jones, E., Stevens, C., & Chonko, L. (2005). *Selling ASAP: Art, Science, Agility, and Performance*, Thompson Publishing.
- Jones, E. (2001), Selling to the Top: Teaching Key Account Selling, *Journal of Personal* Selling and Sales Management, 21 (Fall), 318-319.
- Keys, J. B., & Wolfe, J. (1990). The role of management games and simulations in education and research. *Journal of Management*, 16, 307–336.
- Leach, M. P., Liu, A.H., and Johnston, W.J. (2005), The Role of Self-Regulation Training in Developing the Motivation Management Capabilities of Salespeople. *Journal of Personal Selling and Sales Management*, vol.XXV, n°3, pp.269-281.
- Levin, B. B. (1999). The role of discussion in case pedagogy: Who learns what? and how? In M.A. Lundeberg, B. B. Levin, & H. L. Harrington (Eds.), Who learns what from cases and how? The research base for teaching and learning with cases (pp. 139–157). Mahwah, NJ: Lawrence Erlbaum.
- Li, E. Y., & Baillie, A. S. (1993). Mixing case method with business games: Student evaluations. *Simulation & Gaming*, 24, 336–355.
- Lundeberg, M. A., Levin, B. B., & Harrington, H. L. (Eds.) (1999). Who learns what from cases and how? The research base for teaching and learning with cases. Mahwah, NJ: Lawrence Erlbaum.
- Lynn, L. E., Jr. (1999). Teaching and learning with cases. New York: Chatham House.
- Sparks, J.R. and C.S. Areni (2002), The Effects of Sales Presentation Quality and Initial Perceptions on Persuasion: A Multiple Role Perspective, *Journal of Business Research*, 55 (June), 517-528.
- Prensky, M. (2000). Digital game-based learning. New York: McGraw-Hill.
- Mantel, S. P., Pullins, E.B., Reid, D.A. and R.E. Buehrer (2002), A Realistic Sales Experience: Providing Feedback by Integrating Buying, Selling, and Managing Experiences, *Journal of Personal Selling and Sales Management*, 22 (Winter), 33-40.
- Parker, R. S., Pettijohn, C. E. and Luke, R. H. (1996). Sales Representatives and Sales Professors: A. Comparative Analysis of Sales Training Perceptions, Topics and Pedagogy, *Marketing Education Review*, 6, 3, 41-50.
- Shaw, D.M. (2007). Building sales competences through service learning. Marketing *Education Review*, Volume 17, Number 1 (Spring 2007).

- Sparks, J.R. and C.S. Areni (2002), The Effects of Sales Presentation Quality and Initial Perceptions on Persuasion: A Multiple Role Perspective, *Journal of Business Research*, 55 (June), 517-528.
- Stitt, J. E. (2005), Academic Study + Real-World Experience a Next Generation Sales Force, *Selling*, July, 12-13.
- Teach, R. (1993). What do we teach when we use games? In F. Percival, S. Lodge, & D. Saunders (Eds.), The simulation and gaming yearbook 1993 (pp. 112–121). London: Kogan Page.
- Thompson, A. A., & Stappenbeck, G. J. (1999). *The business strategy game* (6th ed.). Chicago: Irwin/McGraw-Hill.
- Tompson, G. H., & Tompson, H. B. (1995). Using computer simulations for group projects in business school education, *Journal of Education for Business*, 71, 97–101.
- Walter, B., Coalter, T., & Rasheed, A. (1997). Simulation games in business policy courses: Is there value for students?, *Journal of Education for Business*, 72, 170–174.
- Weilbaker, D. C. (2001). *Why a career in sales* (careers in professional selling). Waco, TX:. Hankamer School of Business, Baylor University, Center for Professional Selling.
- Widmier, S., Loe, T., & Selden, G. (2007). Using role-play competition to teach selling skills and teamwork, *Marketing Education*, vol.17, n°1.